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about the form of the cross section. Once a shape has been 
chosen, Bo(s) can be calculated, either analytically or num- 
erically, and the maximum in hLi~(hL) can be found num- 
erically. 

The location of the maximum can also be estimated from 
the approximation (Porod, 1948) 

i~(hL)= exp ( -  h2R2/2) (2) 

where R~ is the radius of gyration of the cross section about 
an axis perpendicular to the cross section and passing 
through the center of mass of the cross section. This ap- 
proximation is valid for an arbitrary cross section shape. 
According to (2), hLi~(hL) has a maximum for hR~= 1. 

The accuracy of the position of the maximum calculated 
from (2) was tested for circular and square cross sections 
and for a rectangular cross section for which one side of 
the rectangle was 10 times as long as the other. According 
to the approximate equation, the maxima for the three cross 
section shapes occur respectively for hL= 2.83, 3.46, and 
3.46, while the corresponding values from the exact expres- 
sion are hL--2.713, 3.336, and 3.798. For square and cir- 
cular cross sections, the agreement of the approximate and 
exact equations is good enough for analysis of many ex- 
perimental curves, since high accuracy is often not neces- 
sary because of other approximations necessary for apply- 
ing the theory to analysis of experimental data. For the 
elongated rectangular cross section a considerably greater 
error results from using the approximate expression. The 
tests of (2) thus suggest that while it may be sufficiently 

accurate for cross sections which are not elongated, for 
highly elongated cross sections, the exact equation probably 
should be used. 

Since a maximum in 021(0) can be expected for the small 
angle X-ray scattering from all elongated rods, plots of 
021(0) can be used to interpret the scattering data from 
samples consisting of long, rod-shaped particles. Fedorov 
& Ptitsyn obtained excellent results with the scattering data 
from a number of samples. Their experience suggests that 
the use of the 021(0) plot may develop into a useful tech- 
nique for the analysis of small angle X-ray scattering data. 

As Mittelbach & Porod (1961) pointed out when dis- 
cussing their numerical computations of the intensity of the 
small angle X-ray scattering from parallelpipeds, equation 
(1) may often be convenient for numerical calculations of 
the scattered intensity from highly elongated particles. 

The author would like to thank Bernard Goodman for 
advice and assistance during the preparation of this paper. 
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The use of the breadth of the diffraction line for obtaining 
estimates of strain and particle size has the advantage of 
speed and convenience over the more elaborate analysis of 
line shapes (Warren, 1959). Therefore breadth analysis is 
frequently employed although its limitations are generally 
realized. However, in evaluating breadth data one of two 
assumptions is sometimes made, either of which is in 
most cases wrong. It is assumed either that the breadth 
due to strain and the breadth due to particle size are addit- 
ive or that the squares of the breadths are additive. This 
is equivalent to assuming either a Cauchy line shape for 
particle and strain broadening or a Gauss shape for both 
broadenings. However, it is known that particle size broad- 
ening tends to give a Cauchy line and strain broadening a 
Gauss or 1/(l+K2x2) 2 line (cf. Taylor, 1961). A method 
for using these more realistic profiles in a breadth analysis 
is given here. 

The observed intensity profile Iobs (x) is the convolution 
of the strain profile L(x) and the particle size profile IT(x), 

Iobs (X) = f ~ ~ ls(x-- u) l,(u) du . 

The integral can be solved by using the Fourier trans- 
forms T of the functions, T[Iobs (x)] = T[L(x)] T[Ip(x)]. lobs 

can be obtained by applying the inverse transformation. 
In the present case considerable simplification is possible 
because only the integral breadth 

Bobs = I~ ~ lobs(x)dx/lobs(O) 

is required. It is 

_ Iobs(x)dx= 1 ~  T-a(T[ls(x)]T[l~'(x)])dx I 

= { r [h (x ) ]  x r[1,(x)lIu~o 
and lobs(o) -- { r - l ( r [ X s ( x ) l r t 1 , ( x ) l )  }x~o (1) 

where x and u are the variables in real and Fourier space 
respectively. Two cases were considered, 

(a) Ip= C~/(1 + K~x2) and h = C,/(1 + K~xZ)Z 
(b) Ip = Cp/(1 + K~x2) and L = C8 exp { -  K~x2}. 

The transforms and the integral breadths B as function of 
particle size L and strain e are 

(a) T[lp]= Cpr~K~ -x exp { -  2ztlul/K~} 
T[L] = ½rcCsK;-2(K, + 2nu) exp { - 2zcu/Ks} 
B~, = rc/K~ = 2/L cos 0, B8 = zr/2Ks = e tan 0 

A C 18 - -  10" 



976 S H O R T  C O M M U N I C A T I O N S  

(b) T[Iv]= CvnK; 1 exp { -  2rrlul/Kv} 
T[L] = VrrC~K; "1 exp ( -  7r2u2/K2s} 
By = rr]Kp = 2/L cos 0, Bs = gn/K, = e tan 0.  

Using these relations in (1) gives 
(a) Bobs = (2Bs + Br)2(4Bs + By) -1 
(b) Bobs= ½B~ exp {-(Bv/B~)2/rc}(3-erf {I/~/nBv/B~}) -1 

(2) 

where erf {x} = exp { - t 2/2}dtas tabulated (Hand- 
0 

book of Chemistry and Physics, 1963). 
An easy separation of strain broadening from particle 

size is possible if two orders of reflexions from the same 
plane are used. The method is demonstrated and numerical 
data are given for the most frequently occurring case of the 
nth and 2nth order (e.g. 111 and 222, 200 and 400). In 
general any two rettexions at 01 and 02 can be used, but 
a graph, different from that given in Fig. 1, has to be 
plotted if (sin 01)/sin 02 =~ 3. 
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Fig. 1. Top curve: 1/LB2. Bottom curve: BtB2-½, 
plotted versus u2. 

The following abbreviations are introduced: 
Bi= B¢obs(COs Oi)/2 } 
u~ = Le(sin 00/2 i = 1, 2 

a = (sin 00/sin 02, 
1 and 2 referring to the two orders of the reflexion. There- 
with, and using (2), 

f B1/B2 = (au2 + ½)2(2u2 + 3)(2au2 -1 t- ½)-l(u2 Jr 3) -2 (a) 
1/LB2 = ½(2u2 + ½)(u2 + ½)-2 

Bl/B2=aexp {(1 - 1/a2)/nu~}(½-erf { I/2-~/u2}) 

(b) x ( 3 -  erf { V'2~/u2a})-x 
1/LB2=(2/u2) exp {1/rru2}(3-erf {V2/n/u2}) 

The results of the calculations of B1/B2 and 1/LB2 as 
functions of u2 and for a = ½ are given in Table 1 and are 
shown in Fig. 1 for case (b). 

Table 1. Values of Bl/B2 and 1/LB2 calculated as 
functions ofu2 

(a) (b) 

it2 B1/B2 1/LB2 B1/B2 I/LB2 
0"1 0"9803 0"9722 0"9888 0"9849 
0'2 0"9446 0"9184 0"9620 0"9464 
0"3 0"9077 0"8594 0"9270 0"8955 
0"4 0"8738 0"8025 0"8898 0"8421 
0"6 0"8174 0"7025 0"8257 0"7409 
0"8 0"7742 0"6213 0"7775 0"6549 
1"0 0"7407 0"5556 0"7397 0"5843 
1"5 0"6836 0"4375 0"6769 0"4568 
2"0 0"6480 0"3600 0"6394 0"3736 
3"0 0"6064 0"2653 0"5974 0"2729 
4"0 0"5830 0"2099 0"5747 0"2147 
6"0 0"5576 0"1479 0-5510 0"1504 
8"0 0"5441 0"1142 0"5387 0"1157 

10"0 0-5357 0-0930 0"5311 0"0939 
15'0 0"5242 0"0635 0"5210 0"0639 
20"0 0"5183 0"0482 0"5157 0"0484 
30"0 0"5123 0"0325 0"5105 0"0326 
40"0 0"5093 0-0245 0"5080 0"0246 
60"0 0"5062 0"0165 0"5053 0"0165 
80"0 0-5047 0"0124 0"5040 0"0124 

100"0 0"5037 0"0099 0"5021 0"0099 

The use of Fig. 1 may be illustrated by taking the 
broadening of the 200 and 400 reflexions which were observ- 
ed with Cu radiation from a film of gold deposited in 
vacuum on sodium chloride. The integral breadths are 
Bxobs(20200 = 44"4 °) = 0-0037 rad 20 and B2obs(20400 = 
98.2°)=0.0070 rad 20 after correction for a l -  ~2 overlap 
and instrumental broadening. These breadths give B I =  
0.00224 /~-i, B2=0-00298 /~-1 and B1/B2=0.753. The 
(B1/B2)-½ and 1/LB2 curves in Fig. 1 give, respectively, 
u2=0"92 and 1/LB2=0.61 from which L =  550 A and e =  
uz2/L sin 02= 0.0034 is obtained as final result. 

The assistance of Mr T. Turton is gratefully acknow- 
ledged. 
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Some of the well known graphical, analytical methods to the primary beam (one arc parallel or both arcs at 45 ° 
which are used to find the arc corrections of a goniometer to the beam) (Kratky & Krebs, 1936; Hendershot,  1937; 
head with crossed arcs from oscillation photographs Weisz & Cole, 1948; Jeffrey, 1949a, b; Burro, 1949; Davies, 
require the use of the following convention: the crossed 1950, 1961). In our method (Kulpe, 1963; Kulpe & Dorn- 
arcs of the goniometer head have a special position relative berger-Schiff, 1965) a similar convention is given. To 


